G／F．9／F．，12／F．，13／F．\＆20／F．，Leader Centre， 37 Wong Chuk Hang Road，Aberdeen，Hong Kong．
Tel ：（852） 28736860
香港黄竹坑道 37 號利達中心地下，9 樓，12 樓，13樓及 20 樓
Fax ：（852） 25557533

E－mail：smec＠cigismec．com Website：www．cigismec．com

CERTIFICATE OF CALIBRATION

Certificate No．：	15CA0312 02－02		Page：	1	of	2
Item tested						
Description：	Acoustical Calibrator（Class 1）					
Manufacturer：	B \＆K					
Type／Model No．：	4230					
Serial／Equipment No．：	1411076					
Adaptors used：	Yes					
Item submitted by						
Curstomer：	Lam Geotechnics Limited					
Address of Customer：	－					
Request No．：	－					
Date of receipt：	12－Mar－2015					
Date of test：	13－Mar－2015					
Reference equipment used in the calibration						
Description：	Model：	Serial No．	Expiry Date：		Trac	to：
Lab standard microphone	B\＆K 4180	2412857	13－May－2015		SCL	
Preamplifier	B\＆K 2673	2239857	10－Apr－2015		CEPR	
Measuring amplifier	B\＆K 2610	2346941	08－Apr－2015		CEPR	
Signal generator	DS 360	61227	09－Apr－2015		CEPR	
Digital multi－meter	34401A	US36087050	01－Dec－2015		CEPR	
Audio analyzer	8903B	GB41300350	07－Apr－2015		CEPR	
Universal counter	53132A	MY40003662	11－Apr－2015		CEPR	

Ambient conditions

Temperature：	$21 \pm 1^{\circ} \mathrm{C}$
Relative humidity：	$60 \pm 10 \%$
Air pressure：	$1010 \pm 5 \mathrm{hPa}$

Test specifications

1．The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 609421997 Annex B and the lab calibration procedure SMTP004－CA－156．
2．The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique．
3，The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker＇s information indicates that the instrument is insensitive to pressure changes．

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942： 1997 for the conditions under which the test was performed．This does not imply that the sound calibrator meets IEC 60942 under any other conditions．

Details of the performed measurements are presented on page 2 of this certificate．

Approved Signatory：

Date：13－Mar－2015
Company Chop：

Comments：The results reported in this gertificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long－ferm stability of the instrument．

G／F．，9／F，12／F，13／F．\＆20／F，Leader Centre， 37 Wong Chuk Hang Road，Aberdeen Hong Kong．
香港黄竹坑道 37 號利達中心地下， 9 樓， 12 樓， 13 樓及 20 樓
E－mail：smec＠cigismec．com Website：www．cigismec．com

CERTIFICATE OF CALIBRATION

（Continuation Page）
Certificate No．：
15CA0312 02－02
Page： 2 of 2

1．Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique．The results are given in below with the estimated uncertainties

Frequency Shown Hz	Output Sound Pressure Level Setting dB	Measured Output Sound Pressure Level dB	（Output level in dB re $20 \mu \mathrm{~Pa}$ ） Estimated Expanded Uncertainty dB
1000	94.00	94.22	0.10

2，Sound Pressure Level Stability－Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B\＆K 2610 measuring amplifier over a 20 second time interval as required in the standard．The Short Term Fluctuation was found to be：
At 1000 Hz
$\mathrm{STF}=0.002 \mathrm{~dB}$
Estimated expanded uncertainty
0.005 dB

3．Actual Output Frequency
The determination of actual output frequency was made using a B\＆K 4180 microphone together with a B\＆K 2673 preamplifier connected to a B\＆K 2610 measuring amplifier．The AC output of the B\＆K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard．The actual output frequency at 1 KHz was：

At 1000 Hz
Actual Frequency $=965.3 \mathrm{~Hz}$
Estimated expanded uncertainty $\quad 0.1 \mathrm{~Hz} \quad$ Coverage factor $\mathrm{k}=2.2$

4，Total Noise and Distortion
For the Total Noise and Distortion measurement，the unfiltered AC output of the B\＆K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser．The TND result at 1 KHz was

At 1000 Hz
TND $=0.7 \%$

Estimated expanded uncertainty
0.7 \％

The expanded uncertainties have been calculated in accordance with the ISO Publication＂Guide to the expression of uncertainty in measurement＂，and gives an interval estimated to have a level of confidence of 95% ．A coverage factor of 2 is assumed unless explicitly stated．

The standard（s）and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level．

CERTIFICATE OF CALIBRATION

Certificate No．：

14CA1213 01
Page
Item tested
Description：
Manufacturer：
Type／Model No．：
Serial／Equipment No．：
Adaptors used：
Item submitted by

Customer Name：	Lam Geotechnics Limited
Address of Customer：	-
Request No．：	-
Date of receipt：	13－Dec－2014

Sound Level Meter（Type 1）
13－Dec－2014

Microphone
B \＆K
4188
2288941

Address of Customer：

Date of receipt：

13－Dec－2014
Date of test：
Reference equipment used in the calibration

Description：	Model：	Serial No．	Expiry Date：	Traceable to：
Multi function sound calibrator	B\＆K 4226	2288444	20－Jun－2015	CIGISMEC
Signal generator	DS 360	33873	09－Apr－2015	CEPREI
Signal generator	DS 360	61227	$09-$ Apr－2015	CEPREI

Ambient conditions

Temperature：
Relative humidity：
Air pressure：
$21 \pm 1^{\circ} \mathrm{C}$
$60 \pm 5 \%$
$1010 \pm 5 \mathrm{hPa}$

Test specifications

1．The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580：Part 1：1997 and the lab calibration procedure SMTP004－CA－152
2，The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of $\pm 20 \%$ ．
3．The acoustic calibration was performed using an B\＆K 4226 sound calibrator and corrections was applied for the difference between the free－field and pressure responsess of the Sound Level Meter，

Test results

This is to certify that the Sound Level Meter conforms to BS 7580：Part 1： 1997 for the conditions under which the test was performed．

Details of the performed measurements are presented on page 2 of this certificate．
Actual Measurement data are documented on worksheets．

Approved Signatory：

Date：15－Dec－2014 Company Chop：

Comments：The results reported iothis certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long－term stability of the instrument．

[^0]E－mail：smec＠cigismec．com Website：www．cigismec．com

CERTIFICATE OF CALIBRATION

（Continuation Page）
Certificate No．：14CA121301 Page 2

1．Electrical Tests
The electrical tests were perfomed using an equivalent capacitance substituted for the microphone．The results are given in below with test status and the estimated uncertainties．The＂Pass＂means the result of the test is inside the tolerances stated in the test specifications．The＂－＂means the result of test is outside these tolerances．

Test：	Subtest：	Status：	Expanded Uncertanity（dB）	Coverage Factor
Self－generated noise	A	Pass	0.3	
	C	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range，Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range，Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100μ s rectangular pulse	Pass	0.3	
R．M．S accuracy	Crest factor of 3	Pass	0.3	
Time weighting 1	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor $1 / 10^{3}$ at 4 kHz	Pass	0.3	
	1 ms burst duty factor $1 / 10^{4}$ at 4 kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2．Acoustic tests

The complete sound level meter was calibrated on the reference range using a B\＆K 4226 acoustic calibrator with 1000 Hz and SPL 94 dB ．The sensitivity of the sound level meter was adjusted．The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties．

Test：	Subtest	Expanded Uncertanity（dB）	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Status	Pass
	Weighting A at 8000 Hz	Pass	0.3
		0.5	

3，Response to associated sound calibrator
N／A

The expanded uncertainties have been calculated in accordance with the ISO Publication＂Guide to the expression of uncertainty in measurement＂，and gives an interval estimated to have a level of confidence of 95% ．A coverage factor of 2 is assumed unless explicitly stated．

Calibrated by：

The standard（s）and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level．
© Soils \＆Materials Engineering Co Ltd

[^1]ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Jun 30, 2015	Rootsmeter S/N	0438320	Ta (K) -	296
Operator Tisch	Orifice I.D. -	0005	Pa (mm) -	749.3

DATA TABULATION

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760] (298/Ta)
Qstd $=$ Vstd/Time

```
Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time
```

For subsequent flow rate calculations:

```
Qstd = 1/m{[SQRT(H2O(Pa/760)(298/Ta))]- b}
Qa = 1/m{[SQRT H2O(Ta/Pa)]- b}
```


Calibration Data for High Volume Sampler (TSP Sampler)

Location	$:$	CMA5b
Equipment no.	$:$	EL222

Calbration Date	$:$	2-Oct-15
Calbration Due Date	$:$	2-Dec-15

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition					
Temperature, T_{a}	301	Kelvin	Pressure, P_{a}		mmHg
Orifice Transfer Standard Information					
Equipment No.	EL086	Slope, m_{c}	2.00072	Intercept, bc	-0.01209
Last Calibration Date	30-Jun-15	$\begin{aligned} & \left(H \times P_{a} / 1013.3 \times 298 / T_{a}\right)^{1 / 2} \\ & =\quad m_{c} \times Q_{s t d}+b_{c} \end{aligned}$			
Next Calibration Date	30-Jun-16				

Calibration of TSP						
Calibration Point	Manometer Reading H (inches of water)			$\begin{gathered} \mathbf{Q}_{\text {std }} \\ \left(\mathrm{m}^{3} / \min .\right) \\ \mathbf{X} \text {-axis } \end{gathered}$	Continuous Flow Recorder, W (CFM)	$\begin{gathered} \text { IC } \\ \left(\mathrm{W}\left(\mathrm{P}_{\mathrm{a}} / 1013.3 \times 298 / \mathrm{T}_{\mathrm{a}}\right)^{1 / 2} / 35.31\right) \\ \mathrm{Y} \text {-axis } \end{gathered}$
1	5.8	5.8	11.6	1.6988	60	59.6619
2	4.6	4.6	9.2	1.5135	55	54.6901
3	3.6	3.6	7.2	1.3396	50	49.7183
4	2.4	2.4	4.8	1.0949	42	41.7634
5	1.5	1.5	3.0	0.8669	34	33.8084

By Linear Regression of Y on X

Slope, m	$=$
Correlation Coefficient* *	$=\frac{31.1467}{0.9986}$
Calibration Accepted	$=$
Yes $/ \mathrm{No}^{* *}$	

Intercept, b =
\qquad

* if Correlation Coefficient <0.990, check and recalibration again.
** Delete as appropriate.

Remarks : \qquad

Calibrated by	$:$	Kit Au
Date	$:$	$2-O c t-15$

Checked by
Date

Derek Lo
2-Oct-15

Calibration Data for High Volume Sampler (TSP Sampler)

Location	$:$	CMA6a	Calbration Date	$:$	$2-O c t-15$
Equipment no.	$:$	EL448	Calbration Due Date	$:$	$2-D e c-15$

CALIBRATION OF CONTINUOUS FLOW RECORDER

Orifice Transfer Standard Information					
Equipment No.	EL086	Slope, m_{c}	2.00072	Intercept, bc	-0.01209
Last Calibration Date	30-Jun-15	$\left(H \times P_{a} / 1013.3 \times 298 / T_{a}\right)^{1 / 2}$			
Next Calibration Date	30-Jun-16	$=\quad m_{c} \times Q_{s t d}+b_{c}$			

Calibration of TSP						
Calibration Point	Manometer Reading H (inches of water)			$\begin{gathered} \mathbf{Q}_{\text {std }} \\ \left(\mathrm{m}^{3} / \mathrm{min} .\right) \\ \text { X-axis } \end{gathered}$	Continuous Flow Recorder, W (CFM)	$\begin{gathered} \text { IC } \\ \left(W\left(\mathrm{P}_{\mathrm{a}} / 1013.3 \times 298 / \mathrm{T}_{\mathrm{a}}\right)^{1 / 2} / 35.31\right) \\ \mathrm{Y} \text {-axis } \end{gathered}$
1	6.5	6.5	13.0	1.7980	56	55.6845
2	5.3	5.3	10.6	1.6242	50	49.7183
3	4.0	4.0	8.0	1.4118	43	42.7577
4	2.6	2.6	5.2	1.1394	38	37.7859
5	1.6	1.6	3.2	0.8951	30	29.8310
By Linear Regression of Y on X						
Slope, m $\quad 27.6043$					Intercept, b =	2357
Correlation Coefficient		$=$	0.9949			
Calibration Accepted =			Yes/No**			

* if Correlation Coefficient < 0.990, check and recalibration again.
** Delete as appropriate.

Remarks : \qquad

Calibrated by	$:$	Kit Au	Checked by	
	$:$	2-Oct-15	Date	$:$Derek Lo Date

[^0]: Hong Kong Accreditation Service（HKAS）has accredited this laboratory（Reg．No． 028 －CAL）under the Hong Kong Laboratory Accreditation Scheme （HOKLAS）for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories．The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation．Such terms of accreditation stipulate that the results shall be traceable to the International System of Units（S．I．）or recognised measurement standards．This certificate shall not be reproduced except in full．

[^1]: Hong Kong Accreditation Service（HKAS）has accredited this laboratory（Reg．No． 028 －CAL）under the Hong Kong Laboratory Accreditation Scheme （HOKLAS）for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories．The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation．Such terms of accreditation stipulate that the results shall be traceable to the International System of Units（S．I．）or recognised measurement standards．This certificate shall not be reproduced except in full．

